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Abstract Reaction–diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal
loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary
conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based materials are discussed.
Providing full control on the velocity of the reaction front, such conditions offer a rich description of the coupling
between transport, reaction, and change in the shape of the a priori unknown time-dependent regions. New models
are formulated and validated by means of numerical simulations and experimental data.
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1 Introduction

A variety of reaction–diffusion problems, which are common in physics, chemistry or biology involve the propagation
of moving internal sharp reaction interfaces or thin strips (see, for instance, [1–3]). This happens whenever there
is an intrinsic mechanism that enforces a spatial segregation of the dominant characteristic length scales. In the
reaction–diffusion scenarios we consider, the separation boundary and its internal structure result from the balancing
of diffusion and reaction. The diffusive effect, which smoothes and mixes the properties of the material, competes
with the mechanism of reaction that drives the reaction locus out of thermodynamic equilibrium. When spatially
separated reactants meet, a reaction zone forms at the separation boundary. If the reaction is very fast, the reaction
zone is usually narrow. In such a setting, the characteristic reaction time scale is much smaller than that of diffusion.

A wealth of similar problems can be found in geochemistry [1,4], phase transitions in steels [5], material
processing or corrosion problems in civil engineering [6–9]. The common feature of these scenarios is that the
reaction zone is driven by means of kinetic laws—explicit descriptions of the normal component of the velocity

A. Muntean (B)
CASA—Centre for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science,
Technical University of Eindhoven, Eindhoven, The Netherlands
e-mail: a.muntean@tue.nl

M. Böhm
Centre for Industrial Mathematics (ZeTeM), Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany
e-mail: mbohm@math.uni-bremen.de

123



90 A. Muntean, M. Böhm

of the moving front as a function of reactant concentrations. Consequently, we are always led to coupled quasi-
linear partly dissipative systems of non-homogeneous parabolic equations permitting the presence of fixed and/or
moving internal boundaries. The use of kinetic conditions has both advantages and drawbacks. On the one hand,
the kinetics often prevents the blow-up of the solution in finite time, while on the other the fronts are expected to
move continuously (without any plateaux in the velocity-vs.-time profile) possibly leading to an over-estimation of
the final time of the process [8–10]. In this paper, we point out a couple of nonlinear behaviors for one of the most
important durability issues in civil engineering—the concrete-carbonation problem—when kinetic conditions drive
surface-concentrated reactions. More details on the approach can be found in [9].

The plan of the paper is as follows. In Sect. 2, we concisely describe the underlying physical and chemical
processes as well as the geometry which our problem refers to. In Sects. 3 and 4, we discuss a couple of non-
equivalent possibilities for defining the position of the moving front and derive a kinetic law for triggering it into the
concrete. Note that everywhere in this paper the reaction front is assumed to be sufficiently thin, that is, either we
deal with a sharp interface or with a thin strip. Section 4.2 contains the complete list of model equations describing
this scenario. Simulation examples illustrate the behavior of the sharp-interface model in Sect. 5. We also point out
a few open modeling issues regarding 2D moving-boundary approaches to the carbonation problem.

2 Kinetic moving-boundary problems applied to concrete carbonation

Carbon dioxide from the surrounding environment penetrates concrete structures via the air-filled parts of the pores,
dissolves in the pore water and reacts there with the available dissolved calcium hydroxide coming from the solid
matrix. The basic assumption for this process to happen is that the porous material is sufficiently wet but not
saturated. For a reduced scenario, the carbonation reaction can be written in the form

CO2 + Ca(OH)2 → H2O + CaCO3. (1)

The chemistry of this process is much more complex than stated in (1); see [12,14,15] for more details on this civil
engineering issue. Although only the case of a single chemical reaction will be discussed here, the methodology
can be applied to situations involving more complex chemistry. The reaction–diffusion process that is associated
with (1), also called concrete carbonation, takes place in all concrete-based materials exposed to air. It has a major
impact on these materials especially because it destroys their alkalinity (which protects the steel reinforcement
against corrosion) [12,18] and alters the micro-structure [17]. In carbonated concretes like bridges, parking houses,
buildings in a marine environment, corrosion initiates easily due to the action of aggressive chemicals. Hence,
spalling and other unwanted effects due to corrosion can occur. Although the phenomenology of the overall process
is well known, there are several qualitative and quantitative behaviors connected to concrete carbonation (especially
under natural exposure conditions) which are not fully understood, and hence, the accuracy of current quantitative
predictions of penetration depths is questionable; see e.g. [9,21]. In what we are concerned with two basic questions
need to be answered:

(a) Why and how is a moving-boundary (interface) approach applicable to carbonation scenarios?
(b) Which mechanism drives the reaction location?

The reader can find details on question (a) in [9,11,17,22]. Within this framework, our attention is rather focused
on answering question (b). The expected result is twofold: (1) to get at a better understanding of the process; and
(2) to gain better quantitative predictions of penetration depths. We show in Sect. 4 that the right answer to question
(b) provides at the same time a good estimate of the time needed to initiate corrosion.

Recently, the carbonation process received renewed attention from the modeling perspective. Conceptually dif-
ferent models have been developed in order to study the carbonation penetration in unsaturated concrete samples,
viz:

(1) moving sharp-interface models;
(2) moving reaction-strip models;
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(3) moving two-reaction-zones models;
(4) isolines models.

Our main contribution consists in developing non-equilibrium models of types 1–3 (see [8,22] and [9]) and their
testing against models of type 4 ([17,23]). We refer to the models of types 1–3 as MBP (Moving-Boundary Pro-
blems). In the sequel, we present the basic methodology on which the non-equilibrium models of the types 1–3
rely; we derive a kinetic free-boundary condition and address the questions (a) and (b) from the perspective of MBP
models.

For models of types 1–3, the model output consists of both concentration profiles and position of the localized
reaction, while for that of type 4 the output contains only concentration profiles. In models of type 4, the position of
the localized reaction is defined a posteriori using the concept of degree of reaction or other similar notions [25].

3 What is the carbonation front?

The first question that needs to be answered is a seemingly trivial one: What is the carbonation front? or, in other
words, What is the right definition of the position of the carbonation front? At this moment, there is a lack of
consensus in the civil engineering literature in answering such a question. It is worth noting that there are a few
conceptually different alternative definitions, which may be taken into account. For instance, one way to define the
position of the front is to employ the chemistry of the sample. In this sense, one can estimate the drop in pH, which
can be nicely visualized by spraying phenolphthalein on cross-sections of partially carbonated samples [21], or
one can take this information by estimating the steepness of a reactant profile [17] or calculating a reaction degree
[18,25]. Carbonation models of type 4 rely on this kind of definitions. A distinct way to tackle this issue is to
define the position of the reaction front using the geometry of the reaction front itself and consider it as an addi-
tional unknown in the model. This is a typical situation which may be dealt with via moving-boundary approaches
describing fast-reaction–slow-diffusion scenarios. Furthermore, it is often a matter of assumption whether a reaction
front is a sharp interface or a thin strip.1 We distinguish between these two conceptually different cases as follows
(see Fig. 1 for a sketch of a one-dimensional geometry we are investigating):

(A) the reaction front associated with (1) is thin and can be idealized by a sharp interface �(t) positioned at
x = s(t);

(B) the reaction is localized within a strip �ε(t) of width ε, whose center line �(t) is positioned at x = s(t).
�ε(t) cannot be approximated by its center line �(t).

The carbonation problem presented as in case (A) was initially discussed two decades ago by Tuutti [26], and
afterwards, by Brieger and Whitmann (they simply employed the Neumann solution of a two-phase Stefan problem;
see [27]). A generalization to more complex reaction–diffusion scenarios has been recently developed in [22]; for
a literature review, see [9, Sect. 2.1.2].

The approach indicated in case (B) is conceptually new. Although the analysis and simulation of this model (of
type 2 or 3) are nowadays relatively standard, the modeling part is more involved and far from being complete. The
difficult part is that two essential pieces of information are always missing:

(a) the a priori width of the strip;
(b) how fast a reaction strip advances into the material. It is worth emphasizing that, although one knows quite a

lot2 about the velocity of sharp reaction interfaces, far less is known if reaction strips are about to move.

A way to control the unwanted effects produced by small variations in (a) and (b) is to provide stability estimates
(for both the free boundary and the concentration profiles) with respect to parameters, initial and boundary data. For

1 Generally, in applications the reaction front is not sharp.
2 At least for simple reaction–diffusion scenarios like those describing the melting of ice bowls (the classical Stefan problem cf. [27–29],
e.g.), solidification of binary alloys [5,30], or flame propagation in combustion problems [19,20], one can estimate the right size of the
speed of the moving sharp interface.
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Fig. 1 Basic geometry in 1D case. �1(t) := (0, s(t) − ε/2) is the carbonated zone, �ε(t) := (s(t) − ε/2, s(t) + ε/2) is the strip
where reaction (1) is concentrated, and �2(t) := (s(t)+ ε/2, L) is the uncarbonated part. If the reaction concentrates on a surface (i.e.,
ε = 0), then �ε(t) degenerates to the interface �(t). L0 is an arbitrary depth in (0, L)

the carbonation problem, such stability estimates have been derived in [9] (Theorems 3.4.8 and 3.5.5). In particular,
they state that small changes in the parameters defining the reaction rate of (1) induce small changes in the model
output.

4 How fast can a reaction strip move?

We can only give an incomplete answer to the question of how fast a reaction strip can penetrate a given material
(here: part of the concrete sample). The general answer to this question appears to be an open problem at the
modeling level. In this section, we focus on a simple situation and derive a law for the normal component of the
velocity of a sharp interface. Next, relying on the structure of the latter law, we suggest an ansatz of the normal
component of the velocity of a straight thin strip.

4.1 Derivation of the kinetic condition

Let � be a slab and �(t) the moving plane where reaction (1) is concentrated. We consider the advancement of the
flat surface �(t) over a time interval S := (t, t +�t] ⊂ ST = [0, T ] into an arbitrary region �′ ⊂ �. Additionally,
we assume that behind the plane �(t) the reaction (1) is complete. The mass concentration of Ca(OH)2 at the pore
level is denoted here by H . Furthermore, let φ be the concrete porosity and φw the water fraction. If �′ is the region
between the planes �(t) and �(t) + �s, where �s is a small increment in space, then the amount of Ca(OH)2
consumed during S in �′ is given by �sφφw H(x, t ′)

∣
∣�(t ′)

∣
∣ for some t ′ ∈ (t, t + �t] (before carbonation). Here

|�(t ′)| is the area of the surface � at time t ′. After a time t + �t , this amount is removed by the surface reaction
(1). The removed amount follows from the reaction rate η�(t) associated to (1) as
∫

S

∫

�(τ)

η�(τ)(x, τ )dσdτ = ∣
∣�(t ′′)

∣
∣�tη�(t ′′)(x, t ′′) (2)

for some t ′′ ∈ (t, t + �t]. Therefore, we have

�s

�t
=

∣
∣�(t ′′)

∣
∣

|�(t ′)|
1

φφw H(x, t ′)
η�(t ′′)(x, t ′′). (3)

Equation 3 essentially describes a situation in which Ca(OH)2 is completely transformed into CaCO3 (with rate
η�(t)). In other words, Eq. 3 may hold only in the case when molecules of Ca(OH)2 do not have time to be leached
away by transport mechanisms. Letting �t → 0 on both sides of (3), we obtain for the velocity s′ of �(t) the
expression
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s′(x, t) = 1

φφw H(x, t)
η�(t)(x, t), x ∈ �(t), t > 0. (4)

Observe that the precise definition of η�(t) is not needed to derive (4). We expect that the denominator of (4) is
strictly positive for all times, i.e.,

φφw H(s(t), t) > 0 for all t ≥ 0. (5)

Usual modifications of the argument in the case of more space dimensions (n = 2, 3) and symmetric geometric
configurations yield (4), too. Note that (4) gives (for the one-dimensional case) the penetration depth

s(t) = s0 +
∫ t

0

1

φφw H(s(τ ), τ )
η�(τ)(s(τ ), τ )dτ (6)

for each t ∈ S.
Let us now remove the hypothesis that (1) is a surface-concentrated reaction and present a faute de mieux ansatz

for the velocity of a reaction strip �ε(t) (having a sufficiently small width ε). The range of validity of such a velocity
law will depend not only on the size of ε but also on the correctness of the velocity for the sharp interface [where
(1) is assumed to localize as ε goes to zero]. If we think now of moving a thin reaction strip �ε(t), then our ansatz
for s′(t) is

s′(t) = cs(ε)

∫

�ε(t)
η�ε(t)(x, t)dx

∫

�ε(t)
φφw H(x, t)dx

, (7)

where η�ε(t)(x, t) denotes the carbonation reaction rate and now (1) is considered to take place within the strip
�ε(t). The factor cs(ε) is typically proportional to ε [9]. Equation 7 is a sort of dilation of (4). More modeling
work is needed to obtain a better variant of (7). Note that the expression of the velocity s′ (defined by the non-local
law (7)) possesses a certain regularizing effect (compared to the sharp-interface case). The structure of (7) typically
allows the quantity εη�ε(t) to converge to η�(t) as ε tends to zero.

Having velocity descriptions like (4) or (7) available, we can obtain estimates on the final time of the process in
a straightforward fashion using some ode-type arguments [9]. Let us discuss the case when (4) holds. The second
case can be dealt with similarly. Let Tfin be the time that (1) needs to fully carbonate the region [s0, L0] (see Fig. 1).
Solving (6) for t , we obtain for t = Tfin the inequalities

L0 − s0

ηmax
< Tfin <

L0 − s0

ηmin
. (8)

In (8), ηmin and ηmax represent known quantitative lower and, respectively, upper bounds on the speed s′ such that

ηmin < s′(t) < ηmax

for all t > 0. The upper bound on Tfin (see the r.h.s. of (8)) is an estimate of the time to initiate corrosion defined in
[18], that is the time that the reaction interface, positioned at x = s(t), needs to reach the point x = L , where the
steel reinforcement is imbedded in the concrete wall.

In order to visualize how fast a reaction interface or strip can indeed move, one needs a PDE model to describe
this. In Sect. 4.2, we derive from first principles what such a model looks like for the case of a moving sharp
carbonation interface. Clearly, if we wish to displace a reaction strip, the law (4) has to be replaced by (7).

4.2 Derivation of a two-phase sharp-interface model

The velocity law (4) together with

s(0) = s0 > 0 (9)

describes the motion of the reaction interface �(t) in the 1D case. To be more precise, we plan to follow the motion
of the point x = s(t) within the finite interval [s0, L]. In order to obtain a complete model, balance equations for the
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active species as well as corresponding initial, boundary and transmission conditions have to be added. The resulting
model will be nonlinear, non-local, strongly coupled, and will have PDEs defined on time-varying domains whose
shape is a priori unknown. We denote by C(x, t), D(x, t), B(x, t), H(x, t) and W (x, t) the (averaged) mass con-
centrations of CO2(aq), CO2(g), CaCO3(aq), Ca(OH)2(aq) and humidity. Recalling the basic geometry described
in Fig. 1, let the carbonation region be �1(t) := (0, s(t)), while the uncarbonated region is �2(t) := (s(t), L).
Clearly, we then have � := �1(t) ∪ {x = s(t)} ∪ �2(t) for any time t ≥ 0. The corresponding mass-balance
equations have the structure

Ct − DcCxx = P(Q D − C) in �1(t), (10)

Dt − Dd Dxx = −P(Q D − C) in �1(t), (11)

Ht − Dh Hxx = Sdiss(Heq − H) in �2(t), (12)

Bt − Db Bxx = Sprec(B − Beq) in �1(t), (13)

Wt − DwWxx = 0 in �, (14)

where Dc, Dd , Dh and Dw are effective transport parameters and Q, Heq, Beq, P, Sprec and Sdiss are, respectively,
Henry’s constant, equilibrium concentrations of aqueous Ca(OH)2 and CaCO3 and mass-transfer coefficients. The
Henry constant for CO2 is known, while the equilibrium concentrations Heq and Beq are estimated by calculating
how much Ca(OH)2 (resp. CaCO3) can be absorbed in the pore water. These two parameters can be determined
exactly by extending the current model into a PDE system that accounts for ionic transport mechanisms, equilibrium
redox/ionic reactions and electrical charge conservation. The balance equations (10)–(11) allow the transfer of CO2

from the air-filled parts of the pores into the pore water, while (12) and (13) incorporate the dissolution of Ca(OH)2
in the pore water and the precipitation of CaCO3 to the solid matrix.

The chemistry of the cement [12] is fully described by the initial conditions

E(x, 0) = E0, (15)

where the species E denotes B, C, D, H and W , respectively. By the same simplifying notation, the isolation
conditions at x = L can be expressed as

Ex (L , t) = 0, (16)

where now E = H, W . At the outer boundary x = 0, we have the following conditions.

C(0, t) = λc, D(0, t) = λd , Bx (0, t) = Wx (0, t) = 0. (17)

In (17), we specify λc and λd in order to be in agreement with either accelerated or natural exposure tests, where the
sample is sheltered from rain. If the sample is exposed to rain, essentially different types of boundary conditions
need to be imposed; see [31] for related comments. Furthermore, the concentrations B, C, H , and W (together
with their gradients) need to satisfy Rankine–Hugoniot jump relations3 at x = s(t). These relations are typically
obtained via a shrinking pillbox argument as mentioned, for instance, in [32]. We have

−DcCx (s(t), t) = s′(t)C(s(t), t) + η�(t)(s(t), t), (18)

−Dd Dx (s(t), t) = s′(t)D(s(t), t), (19)

−Db Bx (s(t), t) = 0, (20)

−Dh Hx (s(t), t) = s′(t)H(s(t), t) − η�(t)(s(t), t), (21)

[−DwWx ]x=s(t) = −η�(t)(s(t), t), [W ]x=s(t) = 0, (22)

where [E]x=s(t) denotes the jump in E(x, t) at the position x = s(t). In this scenario, the reaction rate is assumed
to have the nonlinear form

η�(t)(s(t), t) = kC(x, t)p H(x, t)q for x = s(t), (23)

3 The role of the Rankine–Hugoniot conditions is to ensure the conservation of mass across �(t).
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for all t ≥ 0. In (23), k represents the reaction constant while p and q are partial reaction exponents. Here, k, p and
q are strictly positive, while for mathematical simplicity we take p ≥ 1 and q ≥ 1.

The system (9–23) forms a kinetic moving-boundary model. Additionally, if we assume that the species B pre-
cipitates to the porous matrix and is not further diffusing, then (13) becomes an ODE. Hence boundary and interface
conditions for B are no longer required.

5 Nonlinear effects by reaction

In this section, we illustrate that the MBP derived in Sect. 4.2 captures specific effects induced by the carbonation
reaction. Here we only mention some of them. Detailed information concerning simulation issues as well as fairly
complete descriptions of the involved cement chemistry are reported, for instance in [9,16,17,23,33].

5.1 Simulation examples

For the numerical simulations we rely on two different experimental observations:

(a) accelerated carbonation tests, i.e., short-term tests for which most of the data is fairly well controlled;
(b) natural carbonation tests, i.e., long-term tests for which the exact magnitude of some of the model parameters

is unknown.

Observe that the output of the moving-boundary models (models of types 1–3) consists of the penetration depth
vs. time curve and of the concentration profiles, while the output of isoline models (models of type 4) only consists
of concentration profiles. The next plots contain effects discovered by means of models of types 1–4. All of them
suggest the presence of a reaction zone of a particular strength (with a high Thiele modulus [9,14,17]) somewhere
in the interior of �. These internal zones (either strips or sharp interfaces) are noticed in the carbonation case mainly
due to the fact that the characteristic time of reaction (1) is much smaller than that of the transport of CO2(g).

In Fig. 2, we show an example where two internal reaction strips (instead of one) occur. The strips correspond
to different carbonation-type reactions. More precisely, in this figure it is about the simultaneous carbonation of
Ca(OH)2 via (1) and the carbonation of CSH-phases (see [12] for the exact meaning of the notation as well as
the chemical properties of the compound and [13] for a more mathematical description of CSH-phases formation
through hydration reactions)

CxSyHz + xH2CO3 → xCaCO3 + ySiO2 · tH2O + (x − t + z)H2O. (24)

Simulation details as well as the carbonation experiment employed are explained in [17]. Note that the second strip
has a lower amplitude and a larger width than the first. Moreover, the two strips are almost non-overlapping. This
fact suggests the following scenario: As soon as (1) is finished, (24) goes to completion. Reaction (24) indicates that
a production by secondary carbonation can take place behind the strip �ε(t), namely in �1(t). Another secondary
carbonation effect (this time induced by a secondary dissolution of Ca(OH)2) is pointed out in Fig. 3. Here, two
internal zones of depletion of aqueous Ca(OH)2 can be observed. The first zone corresponds (again) to �1(t), while
the second one is �ε(t). Carbonation within �1(t) slows down the penetration speed of the front; it acts like a
retarder with respect to the overall carbonation penetration. Typical concentration profiles and penetration depths
(obtained with a model of type 3) are shown in Figs. 4 and 5.

In Fig. 6, the water-barrier effect is pointed out; see [23]. In fact, we note that the production of water by (1) may
locally fill air parts of the pores, thus hindering the transport of CO2 in the air phase of the pores. This effect is visible
when simulating accelerated tests in which the CO2 concentration in the carbonation chamber is too high. Hence,
high production rates of water and CaCO3 are expected and a localized water front (acting as a barrier) or a partial
clogging of the pores with CaCO3 can indeed happen. Preliminary remarks on limitations in the use of accelerated
concrete-carbonation tests for service-life predictions are presented in [35]. The water-barrier effect raises some
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Fig. 2 Internal strip formation in a concrete carbonation sce-
nario with two carbonatable components. Both Ca(OH)2 and
CSH react with CO2 to produce carbonates [17] (cf. model of
type 4)

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

 C
a(

O
H

) 2(a
q)

,  
[g

/c
m

3 ]

Ω
1
(t)∪Ωε(t), [cm] 

Fig. 3 Effect of secondary carbonation (cf. model of type 3):
Two internal zones of depletion of Ca(OH)2(aq) (the flat curve
corresponds to �1(t) while the bump is �ε(t)) are formed and
progress into the material. Each curve refers to time t = i
years, i ∈ {1, . . . , 18}
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Fig. 4 a CO2(aq) and CO2(g) concentration profiles vs. space. Each curve refers to time t = i years, i ∈ {1, . . . , 18}. b Interface
position vs. the experimental points “◦” after Tfin = 18 years of exposure

doubts about the relevance of many accelerated laboratory experiments at high CO2 concentration. Since a huge
amount of experimental data already exists, the mathematical challenge is not to deny the usefulness of accelerated
tests, but rather to try to extract some qualitative information out of them. A first step could be an attempt to better
understand the intimate interplay between the production of water by (1), water transport in porous media, water as
host of carbonation reaction, and the change in porosity and water fraction induced by (1), especially concerning
the long-time behavior of active concentrations.

5.2 Limitations of the kinetic moving-boundary approach

Effects on penetration depths induced by special geometries of the samples can be captured with models of type
4 by employing an adaptive finite-element strategy; see [23]. In this class of models, the production terms by
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Fig. 5 a Concentration profiles of CO2(aq) vs. time and space position. b CaCO3(aq) concentration profiles vs. space. Each curve refers
to time t = i years, i ∈ {1, . . . , 18}. c Two internal zones of production of CaCO3 develop into the material (see the counter-piece in
Fig. 3). d Increasing of the strength of the reaction rate in �1(t), when the reaction rate associated to �ε(t) is kept fixed, [9]

Fig. 6 Prediction of moisture profiles under accelerated and natural conditions, see [35]. a accelerated test, CO2 = 50%, RH = 60%;
b natural exposure test, CO2 = 0.03%, RH (relative humidity)= 78%

reaction (1) enter the r.h.s of the mass-balance equations for C, H, B, and W . It is worth mentioning that in the
term kC p Hq the reaction constant k is of the order of O ( 1

ε

)

. Consequently, as ε tends to zero, this term enforces
the spatial segregation of C, D, and B from H [36]. Two simulation examples are shown in Figs. 7 and 8 for the
case of the experimental data from [34]. Figure 7 shows concentration fields of CO2(g), CO2(aq) and Ca(OH)2
at two different times during simulation. Note that after a few days of carbonation, a clear separation between
the carbonated region and the uncarbonated one appears. After an initial transient time typically of order of O(ε)

(cf. Remark 1 in [37]), a thin reaction strip is formed and is ready to move. It appears that near the convex outer
corners, the carbonation strip progresses faster than at straight edges, and it moves even slower near the concave
inner corner.

The last two figures have been obtained with the adaptive finite-element toolbox ALBERTA [24]. It is worth
mentioning that models of types 1–3 have not yet been numerically explored in the (self-)adaptive framework.
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Fig. 7 Carbonation attack around a corner: self-adaptive numerical approach by means of a model of type 4; see [23]

Fig. 8 Carbonation attack around a corner and wall holes after 250 days of natural exposure to CO2: self-adaptive numerical approach
by means of a model of type 4, see [23]

6 Discussion

The list of new research directions arising from the study of the moving-boundary models of kinetic type (applied
to carbonation or to similar physico-chemical processes) is open. We only mention a few aspects, which we believe
to be relevant for the further understanding of the matter:

1. By dimensional inspection, one can observe that the width ε of the reaction strip �ε(t) is inversely proportional
to the ratio of the characteristic reaction time and the characteristic diffusion time [9]. Specifically, the zone of
reaction in such a case is narrowly confined to the interface separating the uncarbonated from the carbonated
phases (like a strip). By this proportionality, we expect the strip to shrink to the interface �(t) when conve-
niently altering that ratio, i.e., �ε(t) → �(t) as ε → 0. Similar dimensional arguments suggest that the speed
of the reaction strip is directly proportional to 1/ε. Motivated by the results reported in [38–40], we expect that
algebraic connections between ε and the partial reaction orders p and q (see (23)) can be obtained for models
of types 1–3 at least for large times. A singular perturbation study may recover the sharp interface setting via
shrinking the reaction strip as ε goes to zero.

2. We reported results of numerical simulations for various model situations. Most of the examples are given for
one-dimensional domains. The extension of the models (of types 1–3) can be done with minimal changes to
the 3D case for a moving planar sharp interface or for symmetric geometries like spheres and cylinders. The
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models of type 4 do not depend on the choice of the space dimension. However, the central question: “How
can kinetic moving-boundary models be formulated in the case of several space dimensions?”, still remains
open. The main difficulty in the multidimensional case consists in finding the right description of the velocity
of the sharp interface under the action of surface-concentrated reactions. In such scenarios, corners and straight
edges are expected to play a significant role. At this point, we are wondering how we could incorporate the
right geometry effects in the kinetic condition. Singular perturbation techniques seem to suggest that a small
curvature term must be introduced. How small should this term be? Are there any other geometrical factors that
need to be accounted for? A geometric phase-field approach (see for instance [41] for hints on the methodology)
or an appropriate singular-limit analysis may help in guessing the natural description of the velocity in the 2D
case in the presence of a corner.

3. The moving-boundary model can be extended to account for reaction-induced changes in porosities and water
and air fractions. Note that, in such situations, the resulting PDE system (with or without moving interfaces)
degenerates, and consequently, there are many challenges for understanding its mathematical analysis.
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